Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(2-1): 024214, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723691

RESUMO

In the present work we study coherent structures in a one-dimensional discrete nonlinear Schrödinger lattice in which the coupling between waveguides is periodically modulated. Numerical experiments with single-site initial conditions show that, depending on the power, the system exhibits two fundamentally different behaviors. At low power, initial conditions with intensity concentrated in a single site give rise to transport, with the energy moving unidirectionally along the lattice, whereas high-power initial conditions yield stationary solutions. We explain these two behaviors, as well as the nature of the transition between the two regimes, by analyzing a simpler model where the couplings between waveguides are given by step functions. For the original model, we numerically construct both stationary and moving coherent structures, which are solutions reproducing themselves exactly after an integer multiple of the coupling period. For the stationary solutions, which are true periodic orbits, we use Floquet analysis to determine the parameter regime for which they are spectrally stable. Typically, the traveling solutions are characterized by having small-amplitude oscillatory tails, although we identify a set of parameters for which these tails disappear. These parameters turn out to be independent of the lattice size, and our simulations suggest that for these parameters, numerically exact traveling solutions are stable.

2.
Phys Rev E ; 107(3-1): 034217, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072957

RESUMO

In the present work we explore the concept of solitary wave billiards. That is, instead of a point particle, we examine a solitary wave in an enclosed region and examine its collision with the boundaries and the resulting trajectories in cases which for particle billiards are known to be integrable and for cases that are known to be chaotic. A principal conclusion is that solitary wave billiards are generically found to be chaotic even in cases where the classical particle billiards are integrable. However, the degree of resulting chaoticity depends on the particle speed and on the properties of the potential. Furthermore, the nature of the scattering of the deformable solitary wave particle is elucidated on the basis of a negative Goos-Hänchen effect which, in addition to a trajectory shift, also results in an effective shrinkage of the billiard domain.

3.
Phys Rev E ; 107(1-1): 014220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797898

RESUMO

We consider a previously experimentally realized discrete model that describes a mechanical metamaterial consisting of a chain of pairs of rigid units connected by flexible hinges. Upon analyzing the linear band structure of the model, we identify parameter regimes in which this system may possess discrete breather solutions with frequencies inside the gap between optical and acoustic dispersion bands. We compute numerically exact solutions of this type for several different parameter regimes and investigate their properties and stability. Our findings demonstrate that upon appropriate parameter tuning within experimentally tractable ranges, the system exhibits a plethora of discrete breathers, with multiple branches of solutions that feature period-doubling and symmetry-breaking bifurcations, in addition to other mechanisms of stability change such as saddle-center and Hamiltonian Hopf bifurcations. The relevant stability analysis is corroborated by direct numerical computations examining the dynamical properties of the system and paving the way for potential further experimental exploration of this rich nonlinear dynamical lattice setting.

4.
Phys Rev E ; 105(4-1): 044211, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590679

RESUMO

In the present work, we revisit a recently proposed and experimentally realized topological two-dimensional lattice with periodically time-dependent interactions. We identify the fundamental solitons, previously observed in experiments and direct numerical simulations, as exact, exponentially localized, periodic in time solutions. This is done for a variety of phase-shift angles of the central nodes upon an oscillation period of the coupling strength. Subsequently, we perform a systematic Floquet stability analysis of the relevant structures. We analyze both their point and their continuous spectrum and find that the solutions are generically stable, aside from the possible emergence of complex quartets due to the collision of bands of continuous spectrum. The relevant instabilities become weaker as the lattice size gets larger. Finally, we also consider multisoliton analogs of these Floquet states, inspired by the corresponding discrete nonlinear Schrödinger (DNLS) lattice. When exciting initially multiple sites in phase, we find that the solutions reflect the instability of their DNLS multi-soliton counterparts, while for configurations with multiple excited sites in alternating phases, the Floquet states are spectrally stable, again analogously to their DNLS counterparts.

5.
Phys Rev E ; 100(2-1): 022210, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574630

RESUMO

In this work, we explore a massless nonlinear Dirac equation, i.e., a nonlinear Weyl equation. We study the dynamics of its pulse solutions and find that a localized one-hump initial condition splits into a localized two-hump pulse, while an associated phase structure emerges in suitable components of the spinor field. For times larger than a transient time t_{s} this pulse moves with the speed of light, effectively featuring linear wave dynamics and maintaining its shape (both in two and three dimensions). We show that for the considered nonlinearity, this pulse represents an exact solution of the nonlinear equation. Finally, we briefly comment on the generalization of the results to a broader class of nonlinearities.

6.
Phys Rev E ; 99(3-1): 032206, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30999528

RESUMO

We observe dark and bright intrinsic localized modes (ILMs), also known as discrete breathers, experimentally and numerically in a diatomic-like electrical lattice. The experimental generation of dark ILMs by driving a dissipative lattice with spatially homogenous amplitude is, to our knowledge, unprecedented. In addition, the experimental manifestation of bright breathers within the band gap is also novel in this system. In experimental measurements the dark modes appear just below the bottom of the top branch in frequency. As the frequency is then lowered further into the band gap, the dark ILMs persist, until the nonlinear localization pattern reverses and bright ILMs appear on top of the finite background. Deep into the band gap, only a single bright structure survives in a lattice of 32 nodes. The vicinity of the bottom band also features bright and dark self-localized excitations. These results pave the way for a more systematic study of dark breathers and their bifurcations in diatomic-like chains.

7.
Nat Commun ; 9(1): 1467, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654228

RESUMO

Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

8.
Philos Trans A Math Phys Eng Sci ; 376(2117)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29507176

RESUMO

In this work, we revisit a criterion, originally proposed in Friesecke & Pego (Friesecke & Pego 2004 Nonlinearity17, 207-227. (doi:10.1088/0951715/17/1/013)), for the stability of solitary travelling waves in Hamiltonian, infinite-dimensional lattice dynamical systems. We discuss the implications of this criterion from the point of view of stability theory, both at the level of the spectral analysis of the advance-delay differential equations in the co-travelling frame, as well as at that of the Floquet problem arising when considering the travelling wave as a periodic orbit modulo shift. We establish the correspondence of these perspectives for the pertinent eigenvalue and Floquet multiplier and provide explicit expressions for their dependence on the velocity of the travelling wave in the vicinity of the critical point. Numerical results are used to corroborate the relevant predictions in two different models, where the stability may change twice. Some extensions, generalizations and future directions of this investigation are also discussed.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'.

9.
Phys Rev E ; 96(3-1): 032214, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29346986

RESUMO

In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H^{''}(c_{0}) evaluated at the critical velocity c_{0}. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.

10.
Phys Rev Lett ; 117(9): 094101, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610856

RESUMO

Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.

11.
Phys Rev E ; 93(6): 062210, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415258

RESUMO

Locally decreasing the impulse transmitted by periodic pulses is shown to be a reliable method of taming chaos in starlike networks of dissipative nonlinear oscillators, leading to both synchronous periodic states and equilibria (oscillation death). Specifically, the paradigmatic model of damped kicked rotators is studied in which it is assumed that when the rotators are driven synchronously, i.e., all driving pulses transmit the same impulse, the networks display chaotic dynamics. It is found that the taming effect of decreasing the impulse transmitted by the pulses acting on particular nodes strongly depends on their number and degree of connectivity. A theoretical analysis is given explaining the basic physical mechanism as well as the main features of the chaos-control scenario.

12.
Phys Rev Lett ; 116(21): 214101, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284659

RESUMO

We explore a prototypical two-dimensional massive model of the nonlinear Dirac type and examine its solitary wave and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability analysis, illustrating the potential of spinor solutions to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These conclusions are found not to be restricted to the case of cubic two-dimensional nonlinearities but are found to be extended to the case of quintic nonlinearity, as well as to that of three spatial dimensions. Our results also reveal nontrivial differences with respect to the better understood nonrelativistic analogue of the model, namely the nonlinear Schrödinger equation.

13.
Artigo em Inglês | MEDLINE | ID: mdl-26565298

RESUMO

In the present work, we combine the notion of parity-time (PT) symmetry with that of supersymmetry (SUSY) for a prototypical case example with a complex potential that is related by SUSY to the so-called Pöschl-Teller potential which is real. Not only are we able to identify and numerically confirm the eigenvalues of the relevant problem, but we also show that the corresponding nonlinear problem, in the presence of an arbitrary power-law nonlinearity, has an exact bright soliton solution that can be analytically identified and has intriguing stability properties, such as an oscillatory instability, which is absent for the corresponding solution of the regular nonlinear Schrödinger equation with arbitrary power-law nonlinearity. The spectral properties and dynamical implications of this instability are examined. We believe that these findings may pave the way toward initiating a fruitful interplay between the notions of PT symmetry, supersymmetric partner potentials, and nonlinear interactions.

14.
Artigo em Inglês | MEDLINE | ID: mdl-25375582

RESUMO

A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...